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CLIMATE STANDARD DATA COLLECTION 

OBSERVED CLIMATE DATA 

 

DATA SOURCE: CRU TS V.4.08 

 

Original Citation: Harris, I., et al. (2020): Version 4 of the CRU TS monthly high-resolution 

gridded multivariate climate dataset. Sci Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3 

 

Original data access: 

https://crudata.uea.ac.uk/cru/data/hrg/  

 

CCKP Data Reference: Climate Change Knowledge Portal: Observed Climate Data, CRU 

TS4.08 0.5-Degree, DOI: https://doi.org/10.57966/tw2k-9h36 

 

Description: CRU TS (Climatic Research Unit gridded Time Series) is an observational climate 

dataset represented on a 0.5 x 0.5-degree grid over all land domains except Antarctica and derived 

by spatial analysis and interpolation from an extensive network of weather station observations 

collected at the Climatic Research Unit at the University of East Anglia (UEA)1. The CRU TS 

version 4.08 gridded dataset provides quality-controlled temperature and rainfall values from 

thousands of weather stations worldwide, as well as derivative products, including monthly 

climatologies and long term historical climatologies. CRU TS has formed the historical foundation 

used by CCKP and is updated on a regular basis (annually) to reflect data corrections and 

improvements as well as extensions of the record towards the present.  

 

Summary of data available at CCKP: 

Presented at monthly, seasonal, and annual scale  

Time period: 1901-2023 

Spatial resolution: 0.5o x 0.5o 

Historical Climatologies: 1901-1930, 1931-1960, 1961-1990, 1985-2014, 1986-2005, 1991-

2020, 1995-2014  

 

Recommended Use: CRU data is suitable for historical averaged climate and trend analysis. 

However, users should be aware that data quality varies over time, and areas with limited station 

coverage, especially from the early 20th century, will default to climatology values. CCKP uses 

CRU data to derive data presentations shown on the Current Climatology Tab 

 

 

DATA SOURCE: ERA5  

 

Original Citation: Hersbach H. et al., (2020): The ERA5 global reanalysis. Quart. Journal of the 

Royal Meteorol. Society, 146: 1999-2049. DOI: 10.1002/qj.3803, and Hersbach, H. et al., 

(2017): Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the 

 
1 University of East Anglia. 2020: Climatic Research Unit. URL:http://www.cru.uea.ac.uk/about-cru  

https://doi.org/10.1038/s41597-020-0453-3
https://crudata.uea.ac.uk/cru/data/hrg/
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.57966%2Ftw2k-9h36&data=05%7C02%7Ccdove%40worldbank.org%7C6a6e917e56c44ade9ec008dc229b866d%7C31a2fec0266b4c67b56e2796d8f59c36%7C0%7C0%7C638423298611671046%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=e0gcyr%2BrCqDt6VuOfI75THZSygSGnTGJsmuisMSHgJE%3D&reserved=0
http://www.cru.uea.ac.uk/about-cru


 

4 

 

global climate. Copernicus Climate Change Service (C3S) Data Store (CDS). 

DOI: 10.24381/cds.143582cf  (Accessed on 22-April-2022 and 10-Jan-2024) 

 

Original data access: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete  

 

CCKP Data Reference: Climate Change Knowledge Portal: Observed Climate Data, ERA5 

0.25-Degree, DOI: https://doi.org/10.57966/128g-6s70 

 

Description: The historical climate reanalysis data from ERA5 are offered at 0.25 x 0.25-degree 

resolution over the entire globe. ERA5 is the fifth generation ECMWF atmospheric reanalysis of 

the global climate covering the period from January 1940 to the present. ERA5 uses a broad 

collection of observational data, including various satellite-derived products in multivariate data 

assimilation mode to capture global variability and change. The data are offered through the 

Copernicus Climate Change Service (C3S) as a public good and are updated operationally. Data 

are updated annually.  

 

Summary of data available at CCKP: 

Presented at monthly, seasonal, and annual scale 

Time period: 1950-2023  

Spatial resolution: 0.25o x 0.25o  

Historical Climatologies (20-year or 30-year periods used for climatologies and natural 

variability): 1986-2005, 1991-2020, 1995-2014  

Decadal trends calculated for: 1951-2020, 1971-2020, 1991-2020 

 

Recommended Use: ERA5 is considered one of the top reanalysis products. It provides consistent 

coverage of all variables found in climate models, making it a valuable reference. In areas with 

good station coverage, ERA5 closely aligns with CRU data, while in regions lacking stations, it 

offers reliable estimates and minimizes false trends from short satellite records. Temperature data 

from ERA5 is highly reliable, but for precipitation, it’s recommended to use multiple datasets due 

to the challenges in accurately measuring and modeling it. 

 

 

PROJECTED CLIMATE DATA 

 

DATA SOURCE: CMIP6 - THE COUPLED MODEL INTERCOMPARISON 

PROJECT, PHASE 6 

 

Original Citation: Eyring, V. et al. (2016): Overview of the Coupled Model Intercomparison 

Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-

1958, DOI: https://doi.org/10.5194/gmd-9-1937-2016  

 

Original data access:  

https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6  

https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html  

 

https://doi.org/10.24381/cds.143582cf
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-complete
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.57966%2F128g-6s70&data=05%7C02%7Ccdove%40worldbank.org%7C6a6e917e56c44ade9ec008dc229b866d%7C31a2fec0266b4c67b56e2796d8f59c36%7C0%7C0%7C638423298611678862%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=CAsNSykr1mVC4X6qlol3nh1%2BovjGVx070mUMAiuL6DU%3D&reserved=0
https://doi.org/10.5194/gmd-9-1937-2016
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html
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CCKP Data Reference: Climate Change Knowledge Portal: Projected Climate Data, CMIP6 

0.25-Degree. DOI: https://doi.org/10.57966/b54h-7s87 

 

Description: Modeled climate projections available on CCKP are derived from the multi-model 

collection of CMIP6 (the Coupled Model Intercomparison Project, Phase 6)2, the most advanced 

global climate data projections available.  CMIP6 is coordinated by the international modeling 

community using coupled climate and Earth system models, under the leadership of the World 

Climate Research Program. The CCKP-CMIP6 dataset includes the historical simulation and four 

future scenarios (Table 1) for up to 30 models (Table 2). Original CMIP6 outputs are provided on 

the Earth System Grid in their native low-resolution grids (~1° resolution). To enhance usability, 

CCKP re-gridded the models to a unified 1°x1° grid, and then bias-corrected and downscaled the 

collection to a 0.25°x0.25° resolution. See below for an extended description.  

 

Summary of data available at CCKP: 

Presented at monthly, seasonal, and annual scale and for daily thresholds  

Data investigation by multi-model ensemble or individual model.   

Time period: 1950-2100 (historical scenario - 1950-2014, future scenarios - 2015-2100) 

Historical Reference Period: 1995-2014  

Future projected Scenarios: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5  

Projected Climatologies: 2020-2039, 2040-2059, 2060-2079, 2080-2099  

Multi-Model Ensemble range: 50th (median), 10th, 90th percentiles   

Spatial resolution: 0.25° x 0.25° (1° x 1° for extreme precipitation events variables) 

Decadal trends calculated for: 1971-2020, 2001-2050, 2051-2100 

 

Recommended Use: To investigate future changes due to global warming.  
 

Downscaling and bias-correction: 

CCKP re-gridded each model output to a common 1x1-degree grid, which was then bias-corrected 

and downscaled the multi-model collection to a common 0.25 x 0.25-degree resolution, as 

described in Thrasher et al. (2012)3. Global climate models often have biases when compared to 

observed climate data due to various limitations (e.g., spatial resolution, parameterizations). These 

biases can be particularly pronounced in the tails of the distributions, which represent the extremes. 

Thrasher et al. (2012) uses quantile mapping for bias correction, which involves transforming the 

simulated data so that its statistical distribution matches the observed data. To achieve this higher 

resolution, daily output from individual models was processed using a quantile-based bias 

correction and spatial disaggregation (BCSD) over a historical reference period (1961-2014). Note 

that this new product was mostly enabled by further improved reanalysis products that served as 

reference. It is important to note, hence, that the CCKP products inherit higher spatial-resolution 

spatial relations from this reference period without the models themselves actually resolving some 

of the underlying processes. Note, the temperature trends of the original model simulations are 

 
2 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of 

the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific 

Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016. 

3 Thrasher, B., Maurer, E. P., McKellar, C., and Duffy, P. B. Technical Note: Bias correcting climate model 

simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci., 16, 3309–3314 (2012). 

https://doi.org/10.5194/hess-16-3309-2012 

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.57966%2Fb54h-7s87&data=05%7C02%7Ccdove%40worldbank.org%7C6a6e917e56c44ade9ec008dc229b866d%7C31a2fec0266b4c67b56e2796d8f59c36%7C0%7C0%7C638423298611660642%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=EqEcwd%2FBB1HJc2hevuaxyXNHfJByWCvkFoREcXBugWU%3D&reserved=0
https://pcmdi.llnl.gov/CMIP6/
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/hess-16-3309-2012
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explicitly preserved during bias correction. The spatial disaggregation is based on the reference 

period spatial structure derived using a scaling approach based on three harmonics of the Fast 

Fourier Transforms. The underlying reference dataset is the 0.25-degree ERA5 output over the 

reference period. All analyses and data products within the CMIP6 distributions of CCKP 

exclusively utilize these downscaled and bias-corrected data as input.  

 

Historical simulations 

Historical simulations, driven by observed radiative forcings, were required to form each model’s 

own historical reference period. While the World Meteorological Organization generally prefers 

reference periods that span 30 years (i.e., 1971-2000, 1981-2010, and 1991-2020), the IPCC-

Assessment Reports (ARs)4 use a compromise of 20-year intervals to better reflect the speed of 

the changing climate. In AR5, the historical reference period was 1986–2005, with scenarios 

diverging in 2006. For AR6 and CMIP6, the historical reference period is 1995–2014, after which 

the SSP scenarios begin. CCKP also applies a consistent 20-year climatological window for future 

projections: 2020–2039, 2040–2059, 2060–2079, and 2080–2099. 

 

Future projections - Shared socioeconomic pathways SSPs: 

There are many components to the model intercomparison efforts, each of which is an attempt to 

advance understanding of particular aspects of the climate system. The key intercomparison effort 

used for the broad climate projections used in CCKP is the “ScenarioMIP” activity, subsequently 

labeled in simplified form as “CMIP6”. This activity expands on the historical climate (1850-2014) 

into the future using various emission and other development metrics as described in the Shared 

Socioeconomic Pathways (SSPs). These pathways were developed along a collection of plausible 

story lines of societal development to offer a continuous perspective from the past, through the 

present, and into the future to study possible magnitudes and characteristics of climate change.  

 

The scenarios chosen by the climate research community span a wide range of options without any 

tie to likelihood. Over the past three decades, the approach to formulating the different scenarios 

has evolved from a climate-centric approach to an increasingly societal development-centric 

concept, albeit with the same underlying goal of providing insight into a range of plausible climate 

outcomes. CMIP6 presents scenarios as the Shared Socioeconomic Pathways (SSPs), instead of 

the Representative Concentration Pathways (RCPs) that were used in CMIP5. CMIP6 climate 

projections are driven by a new set of emissions and land use scenarios produced with a collection 

of integrated assessment models (IAMs) based on new future pathways of societal development, 

the SSPs. To preserve some important consistency, the selected emission levels in the new SSPs 

retain important relations with the RCPs5. While the outputs are similar, CMIP6 climate 

projections will differ from those in CMIP5 not only because they are produced with updated 

versions of climate models, but also because they are driven with SSP-based scenarios produced 

 
4 IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, et al. (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. 

doi:10.1017/9781009157896.  

5 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., 

Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M., 2016: The Scenario Model 

Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, 

https://doi.org/10.5194/gmd-9-3461-2016. 

https://doi.org/10.5194/gmd-9-3461-2016
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with updated versions of forcings and boundary conditions generated by IAMs and based on 

updated data on recent emissions trends. Unlike in CMIP3 and CMIP5, where climate model 

projections were part of the core experiments, in CMIP6 the relevant projection exercises were 

part of a dedicated intercomparison exercise (one of the CMIP6-Endorsed MIPs6), namely the 

Scenario-MIP. 

 

At the core of the Scenario-MIP activity of CMIP6 are the five primary societal development 

pathways for which several climate change projections are being conducted. Each represents a 

possible societal development and policy path for meeting designated radiative forcing by the end 

of the century7. They were not meant to be interpreted as the only possible paths to get to the 

specific forcing levels, but they are selected as representative examples (Table 1).  

 

Table 1. List of future scenarios used in CCKP CMIP6-x0.25 compilation8 
Scenario 

Name 

Description 

SSP1-1.9 SSP1-1.9 represents the most optimistic scenario and was added to offer insight into a climate 

response that would be expected if emissions would globally adhere to the Paris-Accord 

emission target of average global mean temperature rise limited to 1.5°C by 2100. Its end-of-

century radiative forcing over preindustrial conditions is 1.9 watts per meter squared (W/m2), 

thus SSP1 with the label 1.9 (SSP1-1.9). 

SSP1-2.6 SSP1-2.6, which is also derived within SSP1, also aims at sustainable outcomes, with global 

emissions cut severely and a target global average mean temperature rise likely limited to 2°C 

by 2100. However, its end-of-century forcing level is a reflection of the earlier scenario RCP-

2.6, where net-zero emissions are reached after 2050. 

SSP2-4.5 SSP2-4.5 represents a ‘middle of the road’ scenario in which emissions remain around current 

levels before starting to fall around mid-century. Net-zero in that pathway is not reached until 

after 2100. 

SSP3-7.0 SSP3-7.0 represents a polarized world in which regional conflicts endure and emissions 

continue to climb, roughly doubling from current levels by 2100.  

SSP5-8.5 SSP5-8.5 represents a future based on an intensified exploitation of fossil fuel resources 

where global markets are increasingly integrated, leading to innovations and technological 

progress. The radiative forcing associated with this scenario is the highest, again in line with 

earlier RCP-8.5 to preserve continuity in the projections. 

 

Scenario SSP1-1.9: 

Because only a few climate modeling centers offer daily data for SSP1-1.9, CCKP chose a global 

mean-temperature-change-based scaling approach to estimate the ensemble outcomes for the 

SSP1-1.9 scenario. First, the global mean temperature differences were established in the CMIP6 

 
6 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E., 2016: Overview 

of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. 

Model Dev., 9, 1937-1958, DOI: https://doi.org/10.5194/gmd-9-1937-2016  

7O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., 

Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M., 2016: The Scenario Model 

Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, 

https://doi.org/10.5194/gmd-9-3461-2016. 

8 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., 

Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M., 2016: The Scenario Model 

Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, 

https://doi.org/10.5194/gmd-9-3461-2016. 

https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-9-3461-2016
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1-degree datasets between each of the ensemble medians of SSP1-2.6, SSP2-4.5, SSP3-7.0 and 

SSP5-8.5 with the available ensemble of SSP1-1.9 (with reduced number of models). The average 

of these differences was used to establish a linear scaling factor at each time point between the 

global-mean temperature outcomes of the four available scenarios and SSP1-1.9 to estimate the 

equivalent anomalies of all different ensemble products. Because the conversion is only robust at 

the ensemble level (where internal variability is minimized), no estimates for individual models of 

SSP1-1.9 are currently available. 

 

CMIP6 models: 

The CCKP-CMIP6 collection consists of up to 30 models (Table 2) that submitted data across the 

SSPs. All data were processed using an updated version of the Climate Risk Management engine 

(CRMe) infrastructure9 and formatted using ArcGIS and functions offered through the Open 

Geospatial Consortium (http://www.opengeospatial.org/).  Caveats: Note that several models did 

not perform simulations for all of the SSPs. The number of available models may vary for different 

climate indicators. Some GCM and/or IAM groups did not store or report humidity, pressure, or 

wind fields on a daily basis, and thus not all indicators could be computed for all models. 

Therefore, for some indicators, a different numbers of models contributed to the various 

ensembles. This can introduce some inconsistencies when comparing different scenarios, though 

the direction and even the relative magnitude of the changes should still be considered useful. 

 

Table 2. List of models used in CCKP CMIP6-x0.25 compilation  
Model Name Modeling Center 

access-cm2 CSIRO (Commonwealth Scientific and Industrial Research Organization, 

Australia), and ARCCS (Australian Research Council Centre of Excellence for 

Climate System Science, Australia 

access-esm1.5 CSIRO (Commonwealth Scientific and Industrial Research Organization, 

Australia), and ARCCS (Australian Research Council Centre of Excellence for 

Climate System Science, Australia 

bcc-csm2-mr Beijing Climate Center, China Meteorological Administration, China 

canesm5 Canadian Centre for Climate Modeling and Analysis, Canada 

cmcc-esm2 Euro-Mediterranean Center on Climate Change 

cnrm-cm6-1 Centre National de Recherches Meteorologiques, France 

cnrm-esm2-1 Centre National de Recherches Meteorologiques / Centre Européen de 

Recherche et Formation Avancées en Calcul Scientifique, France 

ec-earth2 EC-Earth-Consortium 

ec-earth3-veg-lr EC-Earth-Consortium 

fgoals-g3 China Academy of Sciences, China 

gfdl-cm4 Geophysical Fluid Dynamics Laboratory, NOAA, USA 

gfdl-esm4 Geophysical Fluid Dynamics Laboratory, NOAA, USA 

giss-e2-1-g Goddard Institute of Space Studies, NASA, USA 

hadgem3-gc31-ll UK Met Office Hadley Centre, U.K. 

hadgem3-gc31-mm UK Met Office Hadley Centre, U.K. 

inm-cm4-8 Institute for Numerical Mathematics, Russia 

inm-cm5-0 Institute for Numerical Mathematics, Russia 

 
9 Ammann et al. 2016: An Efficient Workflow Environment to Support the Collaborative Development of 

Actionable Climate Information Using the NCAR Climate Risk Management Engine (CRMe). AGU Fall Meeting. 

12 December, 2016. URL: https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/197594  

http://www.opengeospatial.org/
https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/197594
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ipsl-cm6a-lr The Institute Pierre Simon Laplace, France 

kace-1-0-g National Institute of Meteorological Research, Republic of Korea 

kiost-esm Korea Institute of Ocean Science and Technology, Republic of Korea 

miroc6 Atmosphere and Ocean Research Institute, The University of Tokyo, Japan 

miroc-es2l Atmosphere and Ocean Research Institute, The University of Tokyo, Center for 

Climate system Research - National Institute for Environmental Studies, Japan 

mpi-esm1-2-hr Max Planck Institute for Meteorology (MPI-M), Germany 

mpi-esm1-2-lr Max Planck Institute for Meteorology (MPI-M), Germany 

mri-esm2-0 Meteorological Research Institute, Japan 

nesm3 Nanjing University of Information Science and Technology, China 

noresm2-lm Norwegian Climate Centre, Norway 

noresm2-mm Norwegian Climate Centre, Norway 

taiesm1 Research Center for Environmental Changes, Academia Sinica, Taiwan 

ukesm1-0-ll U.K.'s Met Office and Natural Environment Research Council (NERC), U.K.  

 

Multi-model variability in comparison to natural variability for CMIP6 models: 

The CMIP6 models offer a range of methods to explore multi-model variability. The median value 

across individual model projections is used as the primary representation of the ensemble, with 

additional metrics at the 90th (high) and 10th (low) percentiles to illustrate the range of possible 

outcomes. These values highlight the uncertainty caused by different climate sensitivities and 

internal climate variability across models. The spread of the ensemble tends to increase over time 

as the projections diverge, reflecting these uncertainties. Users can examine each model separately 

to explore the full distribution of outcomes, comparing individual anomalies with the ensemble 

range. To distinguish multi-model variability from natural variability, users can calculate the 

multi-model average and standard deviation for a specific variable, region, and time period (at 

least 20 years). This allows for an assessment of the range of variability across models. 

Additionally, calculating the standard deviation within each model (using a detrended time series) 

helps estimate natural interannual variability. Comparing the model variability with natural 

variability provides insight into how much of the variation is due to model differences versus 

inherent climate fluctuations. Alternatively, users can visualize the "natvar" variable, representing 

standard deviation during the historical period, and compare it to the multi-model ensemble 

percentiles (p10, median, p90) for a clearer understanding of both inter-model and natural 

variability. 

 

Data use: 

CMIP6 model data were originally licensed under a Creative Commons Attribution-ShareAlike 

4.0 International License (CC BY-SA 4.0).  However, in June 2022, the CMIP6 community 

updated their underlying licenses, relaxing them to CC BY 4.0 (https://wcrp-

cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id_licenses.html) and thereby allowing the 

distribution of derivative products . 

 

The World Bank makes data publicly available according to open data standards and licenses 

datasets under the Creative Commons Attribution 4.0 International license (CC-BY 4.0). The 

Creative Commons Attribution 4.0 International license allows users to copy, modify and 

distribute data in any format for any purpose, including commercial use. Users are only obligated 

to give appropriate credit (attribution) and indicate if they have made any changes, including 

https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id_licenses.html
https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id_licenses.html
https://opendefinition.org/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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translations. CC-BY 4.0 is the default license for all datasets produced by the World Bank itself 

and distributed as open data. All CCKP data adhere to CC-BY 4.0.  

 

CCKP acknowledges the World Climate Research Programme, which, through its Working Group 

on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups 

for producing and making available their model output through the Earth System Grid, the Earth 

System Grid Federation (ESGF) for archiving the data and providing access, and the multiple 

funding agencies who support CMIP6 and ESGF. 

 

 

DATA PROCESSING STEPS 

 

WORKFLOW FOR CRU 

 

a. Download latest CRU-TS version: select full timeseries of gridded data at 0.5-degrees 

resolution for all available variables. 

b. Processing of monthly temperature variables and precipitation into monthly and annual 

timeseries. 

c. Spatially aggregate timeseries to ADM0, ADM1, and RiverBasins. 

d. Compute annual average (temperatures) and annual sum (precipitation) climatologies for 

same periods.  

e. Aggregate climatologies spatially. 

 

 

WORKFLOW FOR ERA5 

 

a. Download ERA5 daily global. 

b. Processing of daily timeseries and form list of variables and derived indicators at monthly 

or annual resolution. 

c. Aggregate timeseries to various spatial products (ADM0, ADM1, and RiverBasins). 

d. Generate climatologies for select periods at both gridded and aggregated levels. 

e. Compute trends over select period for both gridded and aggregated products. 

f. From aggregated outcomes, compute heatplot (10-yr climatologies as anomalies to the 

common reference of 1995-2014). 

 

 

WORKFLOW FOR CMIP6 MULTI-MODEL ENSEMBLES 

 

a. For each model, bias-correction and Spatial Desegregation (BCSD) to 0.25 x 0.25-degrees 

b. Calculation of climate indicators: The collection of daily model output was processed for 

calculation of the climate indicators (see Table 3). 

c. Climatologies: For each model, and for each of the climate variables and indicators, 20-

year climatologies were formed from their corresponding time series for historical 

simulations and future periods for all five SSPs. These climatologies consist of twelve-

http://opendefinition.org/
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monthly average values, four seasonal average values, and one annual mean value 

established over the respective time windows (sums for precipitation).  

d. Anomalies: For each model, each variable, each of the four future time windows, and each 

scenario, anomalies for each month as well as the seasonal and annual values were 

computed relative to their corresponding historical reference period. In contrast to the 

climatologies, these values are well suited for model-to-model intercomparisons as they 

always refer to the change simulated by each model.  

e. Ensemble Information: Ensemble values were calculated from the individual model series 

and their anomalies from each of the models in the collection for every 20-year 

climatological period in the future and each scenario. These ensembles describe how the 

collection of up to 30 CMIP6 models, on average, project climatologies or their 

climatological changes. Different ways of exploring the ensemble distribution are possible. 

Here, the median across the individual model values was used as the main representation. 

Next to that central value of the ensemble, ensemble high (90th percentile) and low (10th 

percentile) values for all the climatological quantities were generated to help users 

recognize the range of likely outcomes driven by the different sources of uncertainty. 

Values are available for each model separately, and thus the user could explore the 

distribution in more detail. Because each model has a slightly different climate sensitivity 

and simulated different internal climate variability, the projections increasingly diverge 

into the future. Therefore, the ensemble spread generally increases with time. Note, each 

individual model’s climatological information and anomalies can be compared with the 

provided ensemble description that encompasses the range between high (90th percentile) 

and low (10th percentile) levels of the underlying distribution. 

f. Quality Control: Due to the large data volume, not every field of every model could be 

inspected visually. Rather, the CCKP Team implements an automated final quality control 

algorithm on the publication-ready data to identify odd outliers in both absolute and 

anomaly fields. Suspicious values and potentially suspicious model simulations are flagged 

and ultimately a few individual models or specific products are excluded from the results. 

Once implemented into the CCKP, thorough visual inspection was performed to identify 

any remaining issues. Reported data issues are addressed quickly. 

 

 

WORKFLOW FOR SPATIAL AGGREGATION  

 

a. High-Resolution Intersection: Each type of global data grids was intersected with high-

resolution polygon boundaries (e.g., ADM0, ADM1, River Basins, or other feature zones). 

The fractional overlap of each grid cell with the polygon was calculated.  

b. Fractional Weighting: Weights were assigned to each grid cell based on the fraction of the 

cell that lay within a particular polygon. This ensured that partially overlapping cells 

contributed proportionally to the aggregation.  

c. Latitudinal Area Weighting: Latitudinal weighting was applied to account for the varying 

areas of grid cells resulting from the Earth’s curvature. The cosine of latitude was used to 

adjust for the convergence of grid cells toward the poles.  

d. Variable Aggregation: The weighted mean, sum, or other statistical measures were 

computed for each polygon, with weights combining both fractional overlap and latitudinal 

adjustments.  
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e. Sum or Mean: For most climate variables, the weighted mean of the gridded data was 

calculated. For aggregations involving additive variables, such as population counts, the 

weighted contributions of all grid cells within the polygon were summed.  

f. Output and Validation: The final aggregated statistics were generated at the desired 

resolution (e.g., national or sub-national) and validated against expected values to ensure 

accuracy.  

 

 

WORKFLOW FOR EXTREME PRECIPITATION EVENTS  
 

Extreme Precipitation events (currently available at 1.0-deg, 0.25-deg production in process)   

Extreme events are often responsible for some of the largest climate impacts. Despite limitations 

using relatively coarse resolution climate models, general tendencies can be identified in the 

climate model simulations and their projections of climate change. In fact, sometimes the change 

in the extremes might be more significant against the background noise than the change in the 

means.  

 

The calculation of extremes uses analyses of block maxima of either monthly or annual maximum 

values covering a period of at least 30 years (longer is better to increase sample size). A 

Generalized Extreme Value distribution (GEV) is then fitted to the data using L-Moments for more 

robust results within a scalable python code drawing from the scipy.stats library. Based on the 

returned parameters of location, scale and shape, return levels for a given suite of return periods 

are computed. 

  

For the case of precipitation, the process is more difficult because it describes a discontinuous field 

(problem of including the values of 0). We apply the methodology described in Naveau et al. 

(2016)1 in which precipitation distributions are automatically split into different parts and extreme 

value theory is only applied to the tail. An automated procedure to determine the different sections 

of the distribution is highly advantageous in large, gridded datasets where individual time series 

cannot be inspected. An implementation of the code by Naveau et al. is available as the fit.extgp 

function as part of the mevR package2. To Note, these products are currently being updated.  

  

Variables used for extreme precipitation statistics: Largest 1-Day Precip, Largest 5-Day 

Cumulative Precip, Largest Monthly Cumulative Precip   

Time periods:  

• Historical: 1985-2014 (center 2000)  

• Projections: 2010-2039 (center 2025), 2035-2064 (center 2050), 2060-2089 

(center 2075), 2070-2099 (center 2085)  

Statistics available for precipitation extremes:  

Historical    

• Return Level (5yr, 10yr, 25yr, 50yr, 100yr) e.g. returnlevel5yr    

• Return Period (25mm, 50mm, 100mm, 150mm, 200mm) e.g. returnperiod25mm    

• Annual Exceedance Probability (25mm, 50mm 100mm, 150mm, 200mm) e.g. 

aep25mm   

Projections  

• Future Return Period (5yr, 10yr, 25yr, 50yr, 100yr) e.g. frp5yr    



 

13 

 

• Future Annual Exceedance Probability (5yr, 10yr, 25yr, 50yr, 100yr) e.g. 

faep10yr    

• Change factor (5yr, 10yr, 25yr, 50yr, 100yr)  e.g. changefactorfaep100yr   

 

 

POPULATION AND POVERTY DATA 

DATA SOURCE: POPULATION  

 

Population source data: 

Historical Reference Period (1995-2014) is derived from: 

Center for International Earth Science Information Network - CIESIN - Columbia University. 

2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. 

Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4  

 

Projection data is derived from:  

Jones, B., and B. C. O'Neill. 2020. Global One-Eighth Degree Population Base Year and 

Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01. Palisades, New 

York: NASA Socioeconomic Data and Applications Center (SEDAC).  

https://doi.org/10.7927/m30p-j498. as an advancement from: Jones, B., and B. C. O'Neill. 2016. 

Spatially Explicit Global Population Scenarios Consistent with the Shared Socioeconomic 

Pathways. Environmental Research Letters, 11 (2016): 084003. 

https://doi.org/10.1088/1748-9326/11/8/084003  

 

CCKP Data Reference: Climate Change Knowledge Portal: Projected Population And Poverty, 

0.25-Degree DOI: https://doi.org/10.57966/7r80-cc19 

 

Population data as gridded product or at sub-national level are represented as either population 

count or population density (persons/km2) for “present” (~2010-2015) and as projected in the SSPs 

for selected time intervals. Note, the population density is calculated based on the grid size and 

grid contribution to a sub-national polygon. These calculations might suffer from lack of precision 

for small spatial entities (particularly small islands).  

 

Thresholds per grid-cell or aggregation area were set by population count or density (count: 1’000, 

10’000, 100’000, 1’000’000; density: 1, 10, 100, 1’000). 

Age Pyramid source data: Samir, K. C., & Lutz, W. (2014). The human core of the shared 

socioeconomic pathways: Population scenarios by age, sex and level of education for all countries 

to 2100. Global Environmental Change, 378. https://doi.org/10.1016/j.gloenvcha.2014.06.004 

issn:09593780  

 

Age- and sex- specific proportions are taken from the IIASA database of human capital 

reconstruction and projections. The method used for carrying out projections by age, sex, and 

educational attainment level is a generalization of the standard cohort-component method of 

population projections. This standard method is based on the fact that the age group a in year t will 

be a+x in year t+x (it is the same birth cohort, i.e., group of people born in the same year) after 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://doi.org/10.7927/m30p-j498
https://doi.org/10.1088/1748-9326/11/8/084003
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.57966%2F7r80-cc19&data=05%7C02%7Ccdove%40worldbank.org%7C6a6e917e56c44ade9ec008dc229b866d%7C31a2fec0266b4c67b56e2796d8f59c36%7C0%7C0%7C638423298611685550%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=CdaUeCf1kjkKosSKZoShnrG1XjCI4j9yHKqFNlWgYzI%3D&reserved=0
https://doi.org/10.1016/j.gloenvcha.2014.06.004%20issn:09593780
https://doi.org/10.1016/j.gloenvcha.2014.06.004%20issn:09593780
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adjusting for the effects of mortality and migration and applying fertility rates to derive the number 

of births (the three components of population change).  

 

 

DATA SOURCE: POVERTY  

 

Poverty source data: World Bank Data Catalog: International Poverty Line - Global Subnational 

Poverty Atlas GSPA https://datacatalog.worldbank.org/search/dataset/0042041  

 

Poverty is represented as a percent of population below a given poverty classification: $1.90, 

$3.20, $5.50/day, as per World Bank definitions.  

 

 

NATURAL HAZARDS 

DATA SOURCE: EM-DAT 

 

Source data: https://www.emdat.be/  

 

Credits: EM-DAT: The OFDA/CRED International Disaster Database – www.emdat.be – 

Université Catholique de Louvain – Brussels – Belgium. 

 

Description: EM-DAT contains essential core data on the occurrence and effects of over 18,000 

mass disasters in the world from 1900 to present. The database is compiled from various sources, 

including UN agencies, non-governmental organizations, insurance companies, research institutes 

and press agencies. 

 

Variables presented: Top Disasters; Number Killed; Number of Affected; Average Annual 

Disaster Occurrence by Type. 

 

 

TROPICAL CYCLONES 

 

Cyclones are powerful, rotating storms that form over warm tropical and subtropical oceans and 

generally move from East to West before turning towards higher latitudes. These cyclones are 

known as Hurricanes in the Atlantic and Northeast Pacific basins, and as Typhoons in the 

Northwest Pacific. Cyclones pose a significant threat upon landfall, causing heavy rain, strong 

winds, flooding, and widespread damage, which can degrade water quality, spread disease, and 

destroy infrastructure. In addition to the immediate physical destruction, the aftermath often leads 

to long-term challenges, such as disruption of essential services, economic loss, and environmental 

degradation. To mitigate these impacts and support recovery, building broad resilience is essential. 

In most tropical places the occurrence of these storms in any one place is still rare. Therefore, the 

historical record, commonly going back several decades to a century, is generally too short to allow 

for a robust estimation of recurrence intervals of these storms. Such historical uncertainty can be 

reduced somewhat using models, where large ensembles of tropical cyclones can be generated. 

CCKP is offering these products as first examples that are designed to assist the stakeholder 

https://datacatalog.worldbank.org/search/dataset/0042041
https://www.emdat.be/
http://www.emdat.be/
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community in engaging with Tropical Cyclone data, forming a better understanding of their 

statistical properties today, and then working in a scenario context to consider possible changes in 

the future.  

 

OBSERVED CYCLONES 

 

DATA SOURCE: IBTRACS  

  

Original Citations:   

  

Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The 

International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone 

best track data. Bulletin of the American Meteorological Society, 91, 363-376. 

doi:10.1175/2009BAMS2755.1  
  

Gahtan, J., K. R. Knapp, C. J. Schreck, H. J. Diamond, J. P. Kossin, M. C. Kruk, 2024: 

International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4r01. 

since1980. NOAA National Centers for Environmental Information. doi:10.25921/82ty-9e16 

[access date 24th of October 2024].  

  

Original data access: NOAA's International Best Track Archive for Climate Stewardship 

(IBTrACS) data, https://www.ncei.noaa.gov/products/international-best-track-archive   accessed 

on 24th of October 2024  

  

Description: The International Best Track Archive for Climate Stewardship (IBTrACS) offers a 

global historical reference dataset for observed tropical cyclones around the world (Knapp et al. 

2010). While the archive contains entries in some basins going back over 100 years, the period 

after 1980 – the satellite era – offers a more stationary observing system across all tropical ocean 

basins. The data selected here covers the period 1980-2023 (see Gahtan et al., 2024), drawing on 

wind speed data provided by the USA National Hurricane Center (1-minute sustained wind speed). 

‘USA_wind’ combines data from the National Hurricane Center (NHC), the Join Typhoon 

Warning Center (JTWC), the Central Pacific Hurricane Center (CPHC), and includes data for the 

WMO Regional Specialised Meteorological Center at Miami and Honolulu (operated by 

NOAA).    

 

Summary of data available at CCKP:  

Currently, CCKP only displays IBTrACS data. Products are not available for download. Please 

use this link for data access: https://www.ncei.noaa.gov/products/international-best-track-

archive  

 

The historical record, commonly going back several decades to a century, is generally too 

short to allow for a robust estimation of proper recurrence intervals. Using probabilistic 

products based on large numbers of model simulated cyclones can help fill gaps in the record 

(see CHAZ data below).  

  

 

https://doi.org/10.1175/2009BAMS2755.1
https://doi.org/10.25921/82ty-9e16
https://www.ncei.noaa.gov/products/international-best-track-archive
https://www.ncei.noaa.gov/products/international-best-track-archive
https://www.ncei.noaa.gov/products/international-best-track-archive
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MODELLED CYCLONES 

  

DATA SOURCE: CHAZ MODEL  

  

Original Citation:   

Lee, C.-Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2018). An Environmentally Forced 

Tropical Cyclone Hazard Model. Journal of Advances in Modeling Earth Systems, 10(1), 223–

241. https://doi.org/10.1002/2017MS001186  

  

Lee, C.-Y., S.J. Camargo, A.H. Sobel, and M.K. Tippett (2020). Statistical-dynamical 

downscaling projections of tropical cyclone activity in a warming climate: Two diverging 

genesis scenarios. J. Climate, 33, 4815-4834. http://doi.org/10.1175/JCLI-D-19-0452.1  

  

Original data access: October 2023 (provided directly by Columbia University)  

  

Description:  

The Columbia HAZard Model (CHAZ, Lee et al., 2018) simulates potential cyclone distributions 

across ocean basins and their landfall by generating a comprehensive synthetic catalog of cyclone 

tracks based on outputs from 12 CMIP6 models, thus offering a broader perspective than 

observational data alone. Additionally, CHAZ was used to project future cyclone activity based 

on outputs from the same 12 CMIP6 models under the SSP2-4.5 scenario, centering a 30-year 

projection period around the year 2050. The CHAZ products used here are based on the genesis 

configuration using column relative humidity (CRH, see Lee et al. 2020). CCKP is offering these 

products as first examples that are designed to assist users in engaging with Tropical Cyclone data, 

forming a better understanding of their statistical properties today, and then working in a scenario 

context to consider possible changes in the future. CCKP plans to integrate additional models, 

scenarios, and time periods in the future.  

 

Summary of data available at CCKP:  

Presented at grid-level, and aggregated by ocean basin, exclusive economic zone, and by 

territory/country representing landfall. For ocean basins, a time series and daily climatology of 

storm occurrence within the seasonal cycle is available.   

• Spatial resolution: 0.5o x 0.5o  (50km x 50km)  

• Time period historical scenario: 1951-2014   

• Future scenarios: SSP2-4.5  

• Time period projected scenario: 2035-2064  
  

Recommended Use: To evaluate the probability of cyclones at various wind speed categories 

and assess how these probabilities are projected to change in the future. Due to the limited 

temporal and thus spatial coverage (lots of gaps) of these observational data, we motivate the use 

of large, model-based ensembles to fill these historical gaps and to provide a more comprehensive 

view of actual risk distribution. Applying the identical approach to the evolving climate of future 

climate pathways, here SSP2-4.5, projections are offered of possible future activity. Currently the 

results are based on a single Tropical Storm and impacts simulation model, albeit driven by a broad 

array of 12 different GCMs. Caution should be exercised when interpreting future projections.  

  

https://doi.org/10.1002/2017MS001186
http://doi.org/10.1175/JCLI-D-19-0452.1
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Cyclones classification:   

We classify tropical cyclones using the US National Hurricane Center’s Saffir-Simpson 

Hurricane Scale, based on maximum (sustained) wind speeds. We do not consider storms below 

34 knots (often referred to as Tropical Depressions).   

  

Tropical Storm: 34 to <64 knots   

Category 1: 64 to <83 knots    

Category 2: 83 to <96 knots   

Category 3: 96 to <113 knots   

Category 4: 113 to <137 knots   

Category 5: >=137 knots    

  

Cyclones are classified in 6 categories, as described above, with category names ‘tcts’ for 

tropical storms, ‘tccat1’ for cyclones of category 1, and so on ‘tccat2’, ‘tccat3’, ‘tccat4’, and 

‘tccat5’.  

  

Caveats for future projections:  

CHAZ (Lee et al., 2018) is one model out of a class of statistical-dynamical downscaling tools that 

are being developed and continuously refined in the scientific community. Ideally, one would use 

multiple models with a broad array of configurations to fully sample the space of tropical cyclone 

dynamics and its related statistics. As of now, coordinated collections of projections based on such 

models in a similar way as the CMIP6 experiments are not available yet. Additionally, there remain 

significant gaps in the fundamental understanding of various aspects of the science of Tropical 

Cyclone dynamics as well as global and basin-scale climate change boundary conditions that 

render any available projections of change fundamentally uncertain. While some derived 

tendencies might be more robust than others, for example there appears to be reasonably strong 

agreement that the strongest Tropical Cyclones might become more likely and intense, any 

projected overall frequency changes in the total occurrence are to be used with caution. Based on 

potential trends in global dynamics, some basins might see increases while others might experience 

a decrease in future number of storms. Small differences can potentially lead to a change in sign 

of outcomes. As with other projections, ensembles might be more robust than individual model 

outcomes.   

  

It is worth noting that individual CHAZ simulations were based on the projected climate from 12 

different global CMIP6 models. Large ensembles were run for both historical and one future period 

based on SSP2-4.5 boundary conditions. Simulations were performed for different ocean basins 

where tropical cyclones are occurring today. It might be possible that under future climates, some 

basins, such as the South Atlantic, might become more or less prone for the occurrence of these 

storms. However, these were not simulated here, likely because of a lack of opportunity to calibrate 

the simplified Tropical Cyclone model. Other limitations arise from the uncertainties from within 

model parameters. For example, the CHAZ model has been used in other configurations in the 

genesis part of the model (using saturation deficit rather than column relative humidity), which 

resulted in different outcomes (see Lee et al., 2020; Fosu et al., 2024)10. While in some basins the 

 
10 Fosu, B. O., Sobel, A. H., Lee, C.-Y., Camargo, S. J., Tippett, M. K., Hemmati, M., Drinka, R., Polamuri, S. H., 

Bowen, S. G., & Bloemendaal, N. (2024). Assessing Future Tropical Cyclone Risk Using Downscaled CMIP6 

Projections. Journal of Catastrophe Risk and Resilience, 2024(2), https://doi.org/10.63024/dpva-2pa1  

https://doi.org/10.63024/dpva-2pa1
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cyclone frequency appears to scale reasonably well with prevalent surface temperatures, in others 

(especially the Atlantic), the response is more complex as multiple dynamical factors in 

atmosphere and ocean as well as presence of aerosol can be affecting cyclone formation by 

enhancing or offsetting each other.   

  

Overall, the user is advised to use the projections with caution and regard the products as possible 

outcomes. The goal of this collection is to allow users to familiarize themselves with the type of 

probabilistic data and then to engage with the scientific community to better establish an idea of 

which elements of projections might be more robust than others in their region of interest.  

 

Caveats in Regional Statistics:  

While cyclone counts across ocean basins have been validated and bias-corrected against observed 

values, regional statistics may still show discrepancies. Models provide greater precision in 

calculating probabilities, but users should recognize that the numbers may systematically differ 

from actual occurrences, either higher or lower. Generally, the larger the region, the more accurate 

the statistics. This is particularly important when considering landfall data, and even more so for 

small islands, where model uncertainties tend to be more pronounced.  

 

DATA PROCESSING STEPS 

 

WORKFLOW FOR CYCLONES – CHAZ MODEL  

  

a. Original Data: The original CHAZ data was provided with storm locations and maximum 

winds every six hours.   

  

Gridded Data: These data points were then projected onto a global grid with a resolution 

of 0.5x0.5 degrees (approximately 50 km x 50 km).  

  

b. Temporal Interpolation: This data is then interpolated to half-hour intervals to create a 

continuous center track line on the grid.   

  

c. Footprint: A footprint is subsequently applied to capture the full extent of the cyclones, as 

cyclones are typically larger than 0.5 degrees (roughly 50 km). Applying the full 

footprint is particularly important for small islands to avoid underestimating the cyclone's 

impact. The footprint is based on modeled horizontal wind profiles and latitude, which 

use a dual-exponential decay function derived from 380 observed storms, as detailed by 

Willoughby et al. (2006)11 :    

 
11 Wiloughby, H.E., Darling, R. W. R., and Rahn, M. E. (2006). Parametric Representation of the Primary 

Hurricane Vortex. Part II: A New Family of Sectionally Continuous Profiles. AMS Monthly Weather Review. 134 

(4) 1102-1120. https://doi.org/10.1175/MWR3106.1  

https://doi.org/10.1175/MWR3106.1
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With:  

  

  

The resulting Vo is the modeled wind maximum velocity at each radius r away from the center, 

calculated on a 7x7 matrix (350km diameter) surrounding the storm's center in our case. If the 

storm is larger, the outer part of the storm is excluded, though this is rare. The approximation needs 

two inputs, Vmax - the maximum wind speed from CHAZ - and φ - the storm's latitude. Rmax 

represents the radius at which velocity is Vmax. Here, we assume that the center grid-cell is the 

only cell with highest winds of Vmax even if the radius is >25km (25km refers to half of the 0.5deg 

pixel), which happens for weaker tropical cyclones. Then, X2, which refers to the rapid decay length 

away from the storm's center, is assumed to be fixed at 25 km (deviating from Willoughby et al., 

2006).  X1 represents the slower decay length of the wind profile in the outer bands of the tropical 

cyclone and can be calculated with the formula above.     

 

Here is a schematic illustrating the process of transforming the original CHAZ data into a 

pixelized version with a footprint: a) the original CHAZ points, b) temporal interpolation 

to complete the track, c) addition of the footprint, and classification into different 

categories (represented by colors).  
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d. Multiple Track Generation: These tracks are generated for all cyclones across each 

simulation that consist of 6 separate basin results, 40 ensemble members per global driving 

model (12 CMIP6 models), and future scenario SSP (historical and SSP2-4.5).  

  

e. Bias-Correction: In order to achieve annual counts similar to observations, CHAZ 

estimates the number of effective years that the simulations cover (as a form of bias 

correction). Two different numbers are applied: one for the open ocean and a separate 

number for landfalls.  

  

f. Calculation Of Statistical Products   

  

i. DENSITY MAP: For each cyclone, the spatial wind calculations are converted to 

storm categories using the Saffir-Simpson scale. Then, for each map pixel, we count 

the number of cases in each storm category across all simulations and divide that count 

by the number of effective years of simulation, resulting in a map of storm density by 
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category (number of cyclones per pixel per year). Each storm is only counted once per 

grid cell. Note: For the density map, we apply the ocean basin bias correction, including 

over land areas.  

ii. SPATIAL STATISTICS: For each stack of simulated cyclones, we calculate 

occurrence statistics for each basin, Exclusive Economic Zone (EEZ), and landfall 

events:  

i.OCEAN BASINS: We analyze the peak intensity of each cyclone to 

determine its timing and ocean basin attribution (so each cyclone is 

only linked to one ocean basin for statistics). This enables us to count 

the number of storms per basin per year. The width of the footprint 

has no impact on basin-level statistics. The effective years of 

simulation is applied as bias correction for “values per year”.   

ii.EXCLUSIVE ECONOMIC ZONES (EEZs): We analyze whether 

a cyclone track intersects with a given EEZ. This includes all grid cells 

of a cyclone and thus includes the broader footprint of the storms. An 

EEZ intersection statistic will be determined by the highest storm 

category from all overlapping cells with the area of an EEZ. The 

footprint is particularly important here, especially for small EEZs. The 

effective years are applied as bias-correction.  

iii.LANDFALL: Similarly, we count the number of storms that intersect 

with the official country or territory polygon (ADM0). As with EEZs, 

the highest category of overlapping grid cells are counted. The 

footprint is also particularly relevant when calculating landfall 

statistics. The separate effective years for landfall are applied for bias-

correction.  

  

NOTE: The counts and annual exceedance probabilities for ocean basins, EEZs, and 

landfalls are based on counts of storms. Each storm only gets counted once. Therefore, 

these products are not spatial averages of the gridded fields shown in maps where the same 

cyclone may be counted in each pixel it intersects.  

  

g. Ensembles: The process is repeated across all simulated tropical cyclones, for each of the 

6 basin simulations with CHAZ, and across all 40 ensembles from any single driving GCM. 

Then, across all 12 CMIP6 models, a multi-model ensemble is formed, which is 

represented by the median value as well as the 10th and the 90th percentile to reflect cross-

model variability.  

  

OUTPUT DATA – CHAZ MODEL  

  

GRIDDED PRODUCTS:   

We provide the annual exceedance probability (‘aep’) and return period (‘returnperiod’) as multi-

model ensemble medians for each of the Saffir-Simpson storm category boundaries. An annual 

exceedance probability for Tropical Storms of 2.5 means that on average between 2 and 3 tropical 

storms of at least 34kn can be expected each year. These counts can include also storms with much 

higher winds (TS to Cat5). Annual exceedance probabilities of Category 4 storms, however, do 

only include storms with maximum winds above 113kn. These numbers are computed for the 
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historical period (1951-2014) and a future period based on the SSP2-4.5 scenario (2035-2064) and 

presented at an interpolated grid of 0.5x0.5 degrees. We also provide the anomaly products 

between the projected period and the corresponding historical reference (‘faep’, for median, p10 

and p90 to account for uncertainties across models: note because of the current limitation to 12 

models, p10 is represented by the second lowest, and p90 by the second highest of the ranked 

individual model results). The anomaly is expressed as a ratio or fractional change (future period 

results divided by the corresponding values in the historical run). A fractional change of less than 

1 indicates a decrease in probability (a lower annual exceedance probability) or an increase in 

return period by that factor, while a fractional change greater than 1 indicates an increase in 

probability or a decrease in return period. One visualization also converts the change into a percent 

change of counts at each Tropical Cyclone level. 

 

SPATIALLY AGGREGATED PRODUCTS:  

The following spatially aggregated products can be download by users:  

  

• Cyclone occurrence as number counts per year (‘counts’) and percentages 

(‘tcfraction’) for each storm category, as well as annual exceedance probability (‘aep’) 

for each category and above (at least this category) as spatially aggregated to global, 

ocean basin, Exclusive Economic Zone (EEZ), and country/territory (landfalls) for 

historical and projected SSP2-4.5.    

  

• Annual timeseries of counts over the historical period (1951-2014) have been 

generated for three broader intensity groups (annual temporal aggregation): tropical 

storms, minor cyclones (cat 1 and cat 2, ‘tcminor’) and major cyclones (cat 3 and above, 

‘tcmajor’).   
  

• As a representation of the seasonal cycle of “presence of tropical cyclone activity” 

in all of the ocean basins, the 5-day moving averaged daily storm counts (normalized 

to per 100 years) have been aggregated for tropical storms, minor cyclones, and major 

cyclones.   

 

SEA LEVEL CHANGE 

 

Rising sea levels contribute to coastal flooding, erosion, and the loss of habitat for both human 

populations and wildlife. As the climate warms, thermal expansion of seawater and the melting of 

land-based ice sources - such as glaciers and the Greenland and Antarctic ice sheets - are the 

primary drivers of sea level rise. In addition, regional variations in sea level are influenced by local 

factors, such as vertical land motion and oceanic processes like ocean current changes, making it 

essential to study both global and localized trends. These drivers of sea level change are explained 

in more detail below. 

 

Understanding past and present sea level changes is crucial for projecting future risks and for 

developing adaptation and resilience strategies for affected communities. By analyzing historical 

sea level records and reconstructions (data which combines observed tide gauge measurements 
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with satellite altimetry data to create longer records of sea level changes), scientists are able to 

track the rate of change and identify trends in different regions of the world. This information can 

help policymakers and planners understand changing ocean dynamics and anticipate the impacts 

of future sea level rise to guide decisions on coastal infrastructure, conservation, and disaster 

preparedness. 

 

Sea Level Change Measurement Methods 

The data used to study sea level change is derived from multiple sources, each offering unique 

insights into global and regional trends. 

1. Satellite Altimetry 

Since 1992, satellite altimeters, such as those on NASA’s TOPEX/Poseidon, Jason-1, and 

Jason-2 satellites, have provided precise global measurements of sea surface height. Using 

radar pulses, they track changes in sea level across remote and coastal areas, revealing long-

term trends and patterns on a global scale. 

2. Tide Gauges 

Tide gauges, in use for over a century, measure sea level relative to fixed land points at 

coastal locations. While geographically limited, these instruments provide valuable local data 

on sea level trends and complement satellite observations by capturing regional variations 

due to land subsidence or ocean dynamics. 

3. Probabilistic Reconstruction 

By combining tide gauge records, satellite data, and geophysical models, researchers create 

probabilistic reconstructions of sea level changes. These account for uncertainties and 

quantify contributions from key factors like ice melt, ocean warming, and land motion, 

producing a comprehensive long-term record. 

 

Key Drivers of Sea Level Change 

Sea level rise is driven by several interconnected processes that shape both regional and global 

patterns. The main drivers include: 

1. Ice Sheets and Glaciers 

• Greenland and Antarctic Ice Sheets: Major contributors to global sea level rise as 

warmer temperatures accelerate ice melting, releasing freshwater into the oceans. 

• Mountain Glaciers: Their retreat adds additional freshwater to the seas, further amplifying 

global sea level trends. 

2. Vertical Land Motion can lead to localized sea level changes and can either exaggerate or 

mitigate the effects of global sea level rise. 

• Natural Causes: Tectonic shifts or sediment settling can cause the land to rise or sink. 

• Human Activities: Groundwater extraction or resource removal exacerbates subsidence. 

3. Sterodynamics 

• Thermal Expansion: Oceans absorb heat from global warming, causing water to expand 

and raise sea levels. 

• Ocean Currents: Altered by freshwater input from melting ice and changing heat 

distribution, these shifts create regional sea level variations. 

4. Terrestrial Water Storage 

• Groundwater Depletion: Pumping groundwater adds water to the ocean, increasing sea 

levels. 
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• Land Retention: Water stored in reservoirs, soils, or other terrestrial systems can offset 

sea level rise temporarily. 

Together, these drivers interact to produce the observed trends and regional variations in sea level 

rise, highlighting the complex dynamics of Earth's changing climate system. 

 

HISTORICAL SEA LEVEL CHANGE 

 

ORIGINAL DATASETS (consolidated by NASA and made available via NASA Global Sea 

Level Change): 

1. Tide gauge data: Permanent Service for Mean Sea Level (PSMSL) 

2. Altimetry data: NASA - Integrated Multi-Mission Ocean Altimeter Data for Climate 

Research (NASA-SSH) 

3. Reconstruction product: Kalman Smoother Sea Level Reconstruction 

• This data product offers a near-global, probabilistic analysis of sea level changes from 

1900 to present, combining tide gauge records, satellite data, and geophysical models to 

fill gaps in long-term observations. By resolving individual processes like ice melt, land 

motion, and ocean dynamics, it provides valuable insights into historical trends and 

regional variations, aiding coastal communities in understanding and adapting to rising 

sea levels. 

• Citation: Dangendorf, S., Sun, Q., Wahl, T., Thompson, P., Mitrovica, J. X., and 

Hamlington, B.: Probabilistic reconstruction of sea-level changes and their causes since 

1900, Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, 

2024. 

  

AGGREGATED DATASETS FOR CCKP USERS 

1. Global Mean Sea Level 

2. Gridded Sea Level 

3. Tide Gauge Sea Level 

4. EEZ Sea Level 

 

For each of the above, the following are available via API: 

1. Reconstructed sea level data (annual): 1970 - 2021, baseline 2005 

2. Satellite altimetry data (monthly): 1993 - present, baseline 2005  

3. Tide gauge data (monthly): 1993 - present, baseline 2005  

4. High Tide Flooding (HTF) data: 1970 - present 

• Tracks the number of days per year where sea levels exceed set thresholds 

(40cm[400mm], 60cm[600mm], 80cm[800mm] above average high tide), indicating 

increasing flood risk. These thresholds provide a standardized way to assess changes in 

coastal flooding potential over time. Exceeding thresholds signals higher flood risk, but 

impacts vary by location. This dataset tracks trends but doesn’t confirm flooding on HTF 

days. 

5. Percent contribution of various processes to total sea level change (average from 1993 - 

present) 

 

 

https://earth.gov/sealevel
https://earth.gov/sealevel
https://psmsl.org/
https://podaac.jpl.nasa.gov/NASA-SSH
https://podaac.jpl.nasa.gov/NASA-SSH
https://zenodo.org/records/10621070
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DESCRIPTION OF CLIMATE INDICATORS 

 

CLIMATE INDICATORS 

Climate indicators are designed to capture a specific characteristic of weather and climate that can 

have specific impacts on the ground. Some indicators are logical general statistical summaries of 

basic climate variables, others can reflect the frequency of exceedance over select thresholds with 

meaning for one or more applications. CCKP offers multiple indicators (Table 3) that have been 

implemented on request; new indicators are added regularly. An important part of the collection is 

derived from the list prepared by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change 

Detection and Indices (ETCCDI)12, now under CLIMDEX. Further indicators include different 

heat-hazard indicators, drought-related indicators, and various extreme event quantities13. CCKP 

has also computed categorical products that relate climate with non-climate categories such as 

population to reflect exposure to inform analyses of vulnerability and risk. 

 

Table 3. List of climate indicators  

Definitions for most indicators are sourced from the ETCCDI consortium (Expert Team on 

Climate Change Detection and Indices) and can now be found under www.climdex.org, 

specifically: https://www.climdex.org/learn/indices. CCKP uses these definitions unless otherwise 

stated under “Calculation Details / Reference”. Note that we also include here population variables, 

used to characterize climate vulnerability and exposure (the dataset used is described below in the 

document). The CRU dataset is only produces at monthly scales and thus only offered for mean, 

minimum and maximum temperatures and precipitation (sum). 

 

Listed Alphabetically per Section 
Indicator Name Indicator 

code  

Description Unit Calculation Details/ 

Reference 

TEMPERATURE 

Average Surface 

Air Temperature 

tas Average temperature over the 

aggregation period 

°C model variable 

Average daily 

Maximum Surface 

Air Temperature 

tasmax Average daily maximum temperature 

over the aggregation period 

°C model variable 

Average daily 

Minimum Surface 

Air Temperature 

tasmin Average daily minimum temperature 

over the aggregation period 

°C model variable 

Cooling Degree 

Days (ref-65°F) 

cdd65 The cumulative number of degrees that 

the daily average temperature over a 

given period is above a specified 

threshold (here 65°F), which is a 

measurement designed to quantify the 

degF CLIMDEX under 

CDDcoldn using a 

threshold with 

Fahrenheit 

 
12 See http://etccdi.pacificclimate.org/ list_27_indices.shtml 

13 The precipitation return interval calculations are based on the automatic algorithm of Naveau et al. 2016 

(Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resour. Res., 

52, 2753– 2769, doi:10.1002/2015WR018552) that does not require local a priori specification of a threshold 

beyond which precipitation would be considered as distributed following an extreme value distribution. The results 

presented thus far are the mean expected outcome 

http://www.climdex.org/
https://www.climdex.org/learn/indices
http://etccdi.pacificclimate.org/%20list_27_indices.shtml
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demand for energy needed to cool a 

building. 

Cold Spell 

Duration Index 

csdi The number of days each year in a 

sequence of at least six consecutive days 

during which the value of the daily 

minimum temperature is less than the 

10th percentile of daily minimum 

temperature calculated for a five-day 

window centered on each calendar day, 

using all data for the given calendar day-

pentad from the data period for a 

reference climate (e.g., present-day 

climate). 

days CLIMDEX 

Heating degree 

days (ref-65°F) 

hdd65 The cumulative number of degrees that 

the daily average temperature over a 

given period is below a specified 

threshold (here 65°F), which is a 

measurement designed to quantify the 

demand for energy needed to warm a 

building. 

degF CLIMDEX under 

HDDcoldn using a 

threshold with 

Fahrenheit 

Heat Index Heat 

Risk 

Categorization 

hicat Categorization of the occurrence of days 

above four select thresholds for 

designated Heat Risk Variable. Heat 

Index Risk Categorization includes heat 

index: 35°C, 37°C, 39°C, and 41°C. If at 

least 0.5 day surpassed the highest 

threshold, then the highest category is 

given, reflecting that "at minimum one 

day of the year experienced the highest 

heat level". Risk Factor Categorization: 

0-4 represents Low - Extreme Risk. 

risk category Direct categorization 

using four heat index 

thresholds 

Hot Day Heat 

Risk 

Categorization 

hdcat Categorization of the occurrence of days 

above four thresholds for designated 

Heat Risk Variable. Hot Day Risk 

Categorization includes daily maximum 

temperature: 30C, 35°C, 40°C, and 

45°C. If at least 0.5 day surpassed the 

highest threshold, then the highest 

category is given, reflecting that "at 

minimum one day of the year 

experienced the highest heat level". Risk 

Factor Categorization: 0-4 represents 

Low - Extreme Risk. 

risk category Direct categorization 

using four hot-day 

(tasmax) thresholds 

Hot Day and 

Tropical Nights 

Heat Risk 

Categorization 

hdtr Categorization of the occurrence of days 

above eight thresholds for designated 

Heat Risk Variable. Hot Day and 

Tropical Night Risk Categorization 

includes daily maximum temperature: 

30°C, 35°C, 40°C, and 45°C and 

nighttime minimum temperature: 20°C, 

23°C, 26°C, and 29°C. If at least 0.5 day 

surpassed the highest threshold, then the 

highest category is given, reflecting that 

"at minimum one day of the year 

experienced the highest heat level". Risk 

risk category Direct categorization 

by combining four 

categories of hot day 

(tasmax) and four hot 

night (tasmin) 

categories 
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Factor Categorization: 0-4 represents 

Low - Extreme Risk. 

Hot Day and 

Tropical Nights 

with Humidity 

Heat Risk 

Categorization 

hdtrhi Categorization of the occurrence of days 

above eight thresholds for designated 

Heat Risk Variable. Hot Day and 

Tropical Night with Humidity Risk 

Categorization includes daily maximum 

temperature: 30°C, 35°C, 40°C, and 

45°C; nighttime minimum temperature: 

20°C, 23°C, 26°C, and 29°C and heat 

index: 35°C, 37°C, 39°C, and 41°C. If at 

least 0.5 day surpassed the highest 

threshold, then the highest category is 

given, reflecting that “at minimum one 

day of the year experienced the highest 

heat level”. Risk Factor Categorization: 

0-4 represents Low - Extreme Risk. 

risk category Direct categorization 

using four categories 

of hot day (tasmax), 

four hot night 

(tasmin), and four heat 

index categories 

Maximum of 

Daily Max-

Temperature 

txx The single-day maximum value of the 

daily maximum temperatures over the 

aggregated data period. 

°C CLIMDEX 

Minimum of Daily 

Min-Temperature 

tnn The single-day minimum value of the 

daily minimum temperatures over the 

aggregated data period. 

°C CLIMDEX 

Number of Frost 

Days (Tmin < 

0°C) 

fd The average aggregated number of days 

where the daily minimum temperature is 

< 0°C (= Frost Days) in the data period. 

A negative value in anomalies of this 

indicator indicates a reduction in the 

number of Frost Days. 

days CLIMDEX 

Heat Index hi Heat Index as defined by US-National 

Weather Service 

°C Steadman, R.G 

(1979)14 

Number of Days 

with Heat Index 

>= 35°C 

hi35 The number of days where the Heat 

Index >= 35°C over the aggregation 

period. The Heat Index is a measure of 

apparent temperature that includes the 

influence of atmospheric moisture. High 

temperatures with high moisture lead to 

high Heat Index. 

days CCKP: days over hi 

with threshold 

Number of Days 

with Heat Index 

>= 37°C 

hi37 The number of days where the Heat 

Index >= 37°C over the aggregation 

period. The Heat Index is a measure of 

apparent temperature that includes the 

influence of atmospheric moisture. High 

temperatures with high moisture lead to 

high Heat Index. 

days  CCKP: days over hi 

with threshold 

Number of Days 

with Heat Index 

>= 39°C 

hi39 The number of days where the Heat 

Index >= 39°C over the aggregation 

period. The Heat Index is a measure of 

apparent temperature that includes the 

influence of atmospheric moisture. High 

days  CCKP: days over hi 

with threshold 

 
14 Steadman R.G., 1979: The assessment of sultriness, Part I: A temperature-humidity index based on human 

physiology and clothing science. J. Appl. Meteorol., 18, 861-873, doi: http://dx.doi.org/10.1175/1520-0450 

http://dx.doi.org/10.1175/1520-0450
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temperatures with high moisture lead to 

high Heat Index. 

Number of Days 

with Heat Index 

>= 41°C 

hi41 The number of days where the Heat 

Index >= 41°C over the aggregation 

period. The Heat Index is a measure of 

apparent temperature that includes the 

influence of atmospheric moisture. High 

temperatures with high moisture lead to 

high Heat Index. 

days  CCKP: days over hi 

with threshold 

Number of Hot 

Days (Tmax >= 

30°C) 

hd30 The number of days with daily 

maximum temperature >= 30°C that 

occurred during the aggregation period. 

days CCKP: days over 

tasmax with threshold 

Number of Hot 

Days (Tmax >= 

35°C) 

hd35 The number of days with daily 

maximum temperature >= 35°C that 

occurred during the aggregation period. 

days CCKP: days over 

tasmax with threshold 

Number of Hot 

Days (Tmax >= 

40°C) 

hd40 The number of days with daily 

maximum temperature >= 40°C that 

occurred during the aggregation period. 

days CCKP: days over 

tasmax with threshold 

Number of Hot 

Days (Tmax >= 

42°C) 

hd42 The number of days with daily 

maximum temperature >= 42°C that 

occurred during the aggregation period. 

days  CCKP: days over 

tasmax with threshold 

Number of Hot 

Days (Tmax >= 

45°C) 

hd45 The number of days with daily 

maximum temperature >= 45°C that 

occurred during the aggregation period. 

days CCKP: days over 

tasmax with threshold 

Number of Hot 

Days (Tmax >= 

50°C) 

hd50 The number of days with daily 

maximum temperature >= 50°C that 

occurred during the aggregation period. 

days CCKP: days over 

tasmax with threshold 

Number of Ice 

Days (Tmax < 

0°C) 

id This variable represents the average 

aggregated number of days where the 

daily maximum temperature is < 0°C in 

the data period. 

days CLIMDEX 

Number of 

Summer Days 

(Tmax >= 25°C) 

sd The number of days where the daily 

maximum temperature is >= 25°C in the 

aggregation period. A positive value 

indicates an increase in the number of 

Summer Days. 

days CLIMDEX 

Number of 

Tropical Nights 

(T-min >= 20°C) 

tr The number of days where the daily 

minimum temperature remained >= 

20°C over the aggregation period. 

days CLIMDEX 

Number of 

Tropical Nights 

(T-min >= 23°C) 

tr23 The number of days where the daily 

minimum temperature remained >= 

23°C over the aggregation period. 

days CCKP: days over 

tasmin with threshold 

Number of 

Tropical Nights 

(T-min >= 26°C) 

tr26 The number of days where the daily 

minimum temperature remained >= 

26°C over the aggregation period. 

days CCKP: days over 

tasmin with threshold 

Number of 

Tropical Nights 

(T-min >= 29°C) 

tr29 The number of days where the daily 

minimum temperature remained >= 

29°C over the aggregation period. 

days CCKP: days over 

tasmin with threshold 

Number of 

Tropical Nights 

(T-min >=32°C) 

tr32 The number of days where the daily 

minimum temperature remained >= 

32°C over the aggregation period. 

days CCKP: days over 

tasmin with threshold 
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Temperature-

based Excess 

Mortality Risk 

tx84rr Excess mortality risk factor for daily 

maximum temperatures > 84th percentile 

of maximum temperatures in reference 

period. 

factor Honda et al. 201415 

Temperature-

Based Heat + 

Population Risk 

Categorization 

hdtrpopde

nsitycat 

Temperature-Based Heat + Population 

Risk Categorization is calculated to 

account for both climate conditions and 

high population densities. Categorization 

was established relative to the highest 

threshold: daily maximum temperature: 

30°C, 35°C, 40°C, and 45°C and 

nighttime minimum temperature: 20°C, 

23°C, 26°C, and 29°C, leading to 

categories 0, 1, 2, 3, 4. If at least 0.5 

days surpassed the highest threshold, 

then the highest categorization is given. 

Areas with extreme heat but no 

population are considered less ‘risky’ for 

a country, than areas with only high to 

very high heat conditions but with high 

population density. 

risk factor CCKP: Direct 

categorization using 

two different heat 

categories (hdcat and 

trcat) and intersected 

with population 

density category 

Temperature and 

Humidity-Based 

Heat + Population 

Risk 

Categorization 

hdtrhipop

densitycat 

Temperature and Humidity-Based Heat 

+ Population Risk Categorization is 

calculated to account for both climate 

conditions and high population densities. 

Categorization was established relative 

to the highest threshold: daily maximum 

temperature: 30°C, 35°C, 40°C, and 

45°C; nighttime minimum temperature: 

20°C, 23°C, 26°C, and 29°C, and heat 

index: 35°C, 37°C, 39°C, and 41°C, 

leading to categories 0, 1, 2, 3, 4. If at 

least 0.5 days surpassed the highest 

threshold, then the highest categorization 

is given. Areas with extreme heat but no 

population are considered less ‘risky’ for 

a country, than areas with only high to 

very high heat conditions but with high 

population density. 

risk factor CCKP: Direct 

categorization using 

three different heat 

categories (hdcat, 

trcat, and hicat) and 

intersected with 

population density 

category 

Tropical Night 

Heat Risk 

Categorization 

trcat Categorization of the occurrence of days 

above four thresholds for designated 

Heat Risk Variable. Tropical Night Risk 

Categorization includes nighttime 

minimum temperature: 20°C, 23°C, 

26°C, and 29°C. If at least 0.5 day 

surpassed the highest threshold, then the 

highest category is given, reflecting that 

“at minimum one day of the year 

experienced the highest heat level”. Risk 

Factor Categorization: 0-4 represents 

Low - Extreme Risk. 

risk factor Direct categorization 

using four minimum 

temperature thresholds  

 
15 Honda Y, Kondo M, McGregor G, Kim H, Guo YL, Hijioka Y, Yoshikawa M, Oka K, Takano S, Hales S, Kovats 

RS. Heat-related mortality risk model for climate change impact projection. Environ Health Prev Med. 2014 

Jan;19(1):56-63. doi: 10.1007/s12199-013-0354-6. Epub 2013 Aug 9. PMID: 23928946; PMCID: PMC3890078. 
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Warm Spell 

Duration Index 

wsdi The number of days in a sequence of at 

least six consecutive days during which 

the value of the daily maximum 

temperature is greater than the 90th 

percentile of daily maximum 

temperature calculated for a five-day 

window centered on each calendar day, 

using all data for the given calendar day-

pentad from the data period for a 

reference climate 

days CLIMDEX 

Wet Bulb 

temperature 

wbt Temperature measured if a thermometer 

is covered by a wet cloth 

days Wet Bulb Temperature 

formulation by Stull 

(2011)16. Only 

available for CMIP6 

dataset. 

Wet Bulb 

Temperature > 

25°C 

wbt25 The number of days where the daily wet 

bulb temperature >= 25°C over the 

aggregation period. 

days CCKP: days over wbt 

with threshold 

Wet Bulb 

Temperature > 

27°C 

wbt27 The number of days where the daily wet 

bulb temperature >= 27°C over the 

aggregation period. 

days CCKP: days over wbt 

with threshold 

Wet Bulb 

Temperature > 

29°C 

wbt29 The number of days where the daily wet 

bulb temperature >= 29°C over the 

aggregation period. 

days CCKP: days over wbt 

with threshold 

Wet Bulb 

Temperature > 

31°C 

wbt31 The number of days where the daily wet 

bulb temperature >= 31°C over the 

aggregation period. 

days CCKP: days over wbt 

with threshold 

PRECIPITATION 

Annual Drought 

Index, SPEI (12-

month) 

spei12 The annual Standardized Precipitation 

Evapotranspiration Index (SPEI) 

represents a measure of the integrated 

water deficit in a location, taking into 

account the contribution of temperature-

dependent evapotranspiration (computed 

using method by Hargreaves). The 

integration period for this production is 

12 months. 

SPEI Index PYTHON-package 

climate_indices, James 

Adams (2017):17 after 

Vicente-Serrano et al. 

2010 (J Climate)18 

Average Largest 
1-Day 

Precipitation 

rx1day The average highest precipitation 
amount in a 1-day period during each 

data period. 

mm CLIMDEX 

 
16 Stull R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol., 

50(11), 2267-2269, doi: 10.1175/JAMC-D-11-0143-1 
17 Adams J., 2017: Climate Indices, an open source python library providing reference implementations of 

commonly used climate indices. Url: https://github.com/monocongo/climate_indices. From : 

https://www.drought.gov  
18 Vicente-Serrano, S., Begueria, S., and Lopez-Moreno, I. (2010).  

A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration 

Index. Journal of Climate, 23 (7), p. 1696-1718. doi: https://doi.org/10.1175/2009JCLI2909.1 

https://github.com/monocongo/climate_indices
https://www.drought.gov/
https://doi.org/10.1175/2009JCLI2909.1
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Average Largest 

5-Day Cumulative 

Precipitation 

rx5day The average highest precipitation 

amount over a consecutive 5-day period 

during each data period. 

mm CLIMDEX 

Average Largest 

Month 

Cumulative 

Precipitation 

rxmonth The average highest precipitation 

amount over a consecutive month period 

during each data period. 

mm CLIMDEX 

Maximum 

Number of 

Consecutive Dry 

Days_Max 

cdd The largest number of consecutive dry 

days (>1mm) during the considered 

period. 

 

days CLIMDEX 

Maximum 

Number of 

Consecutive Wet 

Days_Max 

cwd The largest number of consecutive dry 

days (>1mm) during the considered 

period. 

days CLIMDEX 

Number of 

Consecutive Dry 

Days_Mean 

cdd Monthly, Seasonal or Annual maximum 

of the maximum number of consecutive 

days with precipitation < 1mm 

days CLIMDEX 

Number of 

Consecutive Wet 

Days_Mean 

cwd Monthly, Seasonal or Annual mean of 

the maximum number of consecutive 

days with precipitation > 1mm  

days CLIMDEX 

Number of Days 

with Precipitation 

>= 20mm 

r20mm The number of heavy precipitation days 

during the aggregation period. A heavy 

precipitation day is defined as any day in 

which the daily accumulated 

precipitation is ≥= 20 mm. 

days CLIMDEX 

Number of Days 

with Precipitation 

>= 50mm 

r50mm The number of very heavy precipitation 

days during the aggregation period. A 

very heavy precipitation day for r50mm 

is defined as any day in which the daily 

accumulated precipitation is ≥= 50 mm. 

days CLIMDEX 

Precipitation pr Aggregated accumulated precipitation. mm model variable 

Precipitation 

Percent Change 

prpercnt Projected percent change in total 

precipitation; anomaly only. The initial 

time series from which all calculations 

derive is calculated as the percent 

precipitation for each month with respect 

to the average month during the 

historical reference period (usually 

1995-2014). For example, percent 

precipitation on January 1999 is the 

precipitation on January 1999 divided by 

the average of precipitation over all the 

Januaries between 1995 and 2014 and 

multiplied by 100. 

% percent of pr in 

historical reference 

period 

Precipitation 

Amount during 

Wettest Days 

r95ptot The total sum of daily precipitation 

during wet days that exceed the 95th 

percentile of wet days determined during 

the historical reference period. 

mm CLIMDEX 

EXTREME PRECIPITATION EVENTS 
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Largest 1-day 

Precipitation  

rx1day The highest precipitation amount in a 1-

day period during a period.  

mm Naveau et al. (2016)19 

Largest 5-day 

Cumulative 

Precipitation 

rx5day The highest precipitation amount over a 

consecutive 5-day period during a 

period. 

mm Naveau et al. (2016) 

Largest Month 

Cumulative 

Precipitation 

rxmonth The highest precipitation amount over a 

consecutive month period during a 

period. 

mm Naveau et al. (2016) 

POPULATION 

Population Count popcount Population Count population Source: Global 

Population of the 

World, v.420 

Population 

Density 

popdensit

y 

Population Density population_ 

density 

Calculated from: 

Global Population of 

the World, v.4 

POVERTY 

Percentage of 

Population below 

$1.90/day 

pov190 Poverty as a percent of population below 

a given poverty classification: 

$1.90/day, as per World Bank 

definitions. 

% of population Worldbank data 

integrating GDP, 

Population, Ginis; See 

Rao et al (2018)21 

Percentage of 

Population below 

$3.20/day 

pov320 Poverty as a percent of population below 

a given poverty classification: 

$3.20/day, as per World Bank 

definitions. 

% of population Worldbank data 

integrating GDP, 

Population, Ginis; See 

Rao et al (2018) 

Percentage of 

Population below 

$5.50/day 

pov550 Poverty as a percent of population below 

a given poverty classification: 

$5.50/day, as per World Bank 

definitions. 

% of population Worldbank data 

integrating GDP, 

Population, Ginis; See 

Rao et al (2018) 

OTHER 

Growing Season 

Length 

gsl Span in number of days between the 

days defining the Growing Season Start 

and Growing Season End (see below) 

computed across each of the two 

hemispheres. 

days CLIMDEX 

Growing Season 

Start 

gslstart Annual series with the day of the year 

(1st Jan to June 30 in Northern 

Hemisphere, NH, and 1st July to 31st Dec 

in Southern Hemisphere, SH) that 

reflects the first span of at least 6 

consecutive days with daily mean 

temperature T >5oC. 

days CLIMDEX gsl, 

referring to start day 

of the growing season 

Growing Season 

End 

gslend Annual series with the day of the year 

(1st Jan to June 30 in Southern 

Hemisphere, SH, and 1st July to 31st Dec 

in Northern Hemisphere, NH) that 

days CLIMDEX gsl, 

referring to end day of 

the growing season 

 
19 4 Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resour. 

Res.,52, 2753– 2769, doi:10.1002/2015WR018552 
20 Jones B. and B.C. O’Neill, 2016: Spatially Explicit Global Population Scenarios Consistent with the Shared 

Socioeconomic Pathways. Env. Res. Lett., 11, 084003, doi: 10.1088/1748-9326/11/8/084003  
21 Rao N.D., et all. Income inequality projections for the Shared Socioeconomic Pathways. Futures, doi: 

10.1016/j.futures.2018.07.001   
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reflects the first span of at least 6 

consecutive days with daily mean 

temperature T <5oC. 

Relative Humidity hurs Based on daily mean relative humidity at 

2m as reported by climate models or 

derived from specific humidity reported 

by climate models. 

percent model variable 

 

 

DESCRIPTION OF CLIMATE PRODUCTS AND INTERPRETATION  

  

Most CCKP-processed data is available in monthly, seasonal, and annual resolutions as time series, 

along with various statistical products outlined below. All data are provided as globally gridded 

products in netCDF format and in spatially aggregated form, reflecting World Bank shapefiles for 

national (ADM0) and sub-national (ADM1) units, as well as global watersheds (HydroBasins v4). 

Ocean-related data, such as cyclones and sea level rise, have also been spatially aggregated for 

Exclusive Economic Zones.  

  

Time series (‘timeseries’) - available for all datasets. - The download page offers full time series 

(‘timeseries’) at the pixel level (raster files) and spatially aggregated, available at various temporal 

resolutions. The user can calculate their own statistics and temporal and spatial aggregation from 

those primary time series. Beyond time series, CCKP has calculated standard climate statistical 

products for standard time periods. See the following definitions.     

  

 Table 4. List of products 
Product  Recommended use  Description  

Anomaly (‘anomaly’, 

‘anomalysignificance’, 

‘robustchange’, ‘nochange’, 

‘conflictingchange’) -   

available for CMIP6 future 

projections  

  

  

 - The anomalies are used to 

show the long-term 

differences between the 

historical period and a 

future projected period. 

Because of internal climate 

variability, the 20-year 

intervals at the grid level 

(or at aggregation levels of 

relatively small domains) 

become more useful when 

looking at the progressive 

changes throughout the 21st 

century with its 

continuously shifting 

climate. Each 20-year time 

window can therefore be 

compared to the standard 

“present day” reference 

period of 1995-2014 

(CMIP6). The resulting 

anomalies also correspond 

For each model, each variable, and each of the four future time 

windows, anomalies for each month as well as the seasonal and 

annual values were computed relative to their corresponding 

historical reference period (starting from a smoothed 20-year 

running averages). In contrast to climatologies, these values are 

well suited for model-to-model intercomparisons as they always 

refer to the change simulated by each model. Hence, we 

recommend using anomalies when focusing on changes. The 

ensemble anomaly is calculated by taking the anomalies from 

individual models and then determining the median, along with 

the 10th and 90th percentiles.  

  

For significance and agreement across models, CCKP is 

applying the formulation adopted in the sixth Assessment Report 

of IPCC (Masson-Delmotte et al, 2021; see Cross-Chapter Box 

Atlas 1, p. 1945-1948). Anomaly significance is determined at 

the individual model level and is established by comparing the 

climatological mean of a future period against the range of 

natural variability in the historical period. If outside of that 

range, then the change is determined as significant.  

  

The fields 'robust-change,' 'no-change,' and 'conflicting-change' 

are determined solely at the ensemble level, as they indicate 

model agreement and areas of discrepancy. The field ‘robust-

https://www.hydrosheds.org/products/hydrobasins#:~:text=HydroBASINS%20represents%20a%20series%20of,boundaries%20at%20a%20global%20scale.
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to results presented in the 

IPCC22,23.  

  

change’ indicates a value of 1 when there is a significant change 

with high agreement across models. Specifically, this requires 

that more than two-thirds of the models show an anomaly 

exceeding the natural variability calculated from the historical 

reference climate, and 80% of these models must agree on the 

direction of the change. The field ‘no change’ indicates no 

significant change or no robust signal. The field indicates a 

value of 1 wherever fewer than two-thirds of the models show a 

change that exceeds the historical natural variability. The field 

‘conflicting change’ indicates significant changes but high 

disagreement among models. The field indicates a value of 1 

wherever more than two-thirds of the models show an anomaly 

above the historical natural variability, but fewer than 80% of 

these models agree on the direction of the change.  

Annual Exceedance 

Probability (‘aep..’) - 

available for extreme 

precipitation events and 

cyclones in CMIP6 models  

Annual exceedance 

probability represents the 

probability that an event 

will exceed a specific value 

(e.g., flood discharge, 

rainfall amount, wind 

speed) in any given year.  

For precipitation extremes, we provide AEP for the following 

thresholds: 25mm, 50mm 100mm, 150mm, 200mm e.g. 

aep25mm - Number of days per year with precipitation variable 

exceeding a given threshold.  

  

For cyclones, we provide the annual exceedance probability 

(‘aep’) for each category and above, as the number of 

cyclones/year for the given category and higher.   

Climatology 

(‘climatology’) - available 

for all datasets and all time 

periods  

Climatology is used to 

characterize the average 

climate (historically and 

projected)  

Climatology is the annual (1 layer), seasonal (4 layers), or 

monthly (12 layers) temporal average over a period of time.  

  

Daily 

Percentiles  Percentiles (1 

daily, 5 daily, 10 daily, 90 

daily, 95 daily, 99 daily) - 

available for few variables 

in ERA5 and CMIP6 

(historical scenario)   

Daily percentiles aim to 

show the day-to-day natural 

variability.  

A percentile is a statistical measure indicating the value below 

which a given percentage of observations in a dataset falls. In 

our datasets, different percentiles are calculated from daily data 

for each season (3 months) for the full historical period.  

  

Future Annual 

Exceedance Probability 

and change factor – 

available for CMIP6 

extreme precipitation events 

and cyclones  

This product indicates how 

the extreme events are 

changing in time  

For precipitation extremes:  

• Future Annual Exceedance Probability (5yr, 

10yr, 25yr, 50yr, 100yr) e.g. faep10yr - 10-yr 

Change in Future Annual Exceedance Probability 

(occurrence / year)   

• Change factor (5yr, 10yr, 25yr, 50yr, 

100yr)  e.g. changefactorfaep100yr - 100-yr 

Change in Future Annual Exceedance Probability 

(Change Factor). The factor is expressed as a ratio 

or fractional change (future period results divided 

by the corresponding values in the historical run). 

A fractional change of less than 1 indicates a 

decrease in probability (a lower annual exceedance 

probability) or an increase in return period by that 

 
22 Stocker, T. et al, (2013). Climate Change 2013 – The Physical Science Basis. Working Group I Contribution to 

the Fifth Assessment Report of the IPCC. 

URL: https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf 
23 IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of 

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-

Delmotte, V., P. et al. Cambridge University Press. In Press. 

URL: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf  

https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
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factor, while a fractional change greater than 1 

indicates an increase in probability or a decrease in 

return period.  

  

For cyclones, ‘faep’ indicates the ratio or fractional change 

(future period results divided by the corresponding values in the 

historical run). A fractional change of less than 1 indicates a 

decrease in probability (a lower annual exceedance probability) 

or an increase in return period by that factor, while a fractional 

change greater than 1 indicates an increase in probability or a 

decrease in return period.  

Future Return Period – 

available for CMIP6 

extreme precipitation 

events  

The return period (e.g., 100 

years) at which an event of 

a certain intensity, 

equivalent to the historical 

return level for that same 

period, is projected to occur 

in the future. For example, 

if a 100-year event 

historically is projected to 

occur every 85 years in the 

future, the future return 

period for that event has 

decreased to 85 years.  

For precipitation extremes, we provide Future Return Period 

(5yr, 10yr, 25yr, 50yr, 100yr) e.g. frp5yr - Future return period 

(years) for extreme precipitation events that correspond to the 

100-year return period levels during the historical period.    

  

Heatplot - available for 

ERA5 and CMIP6    

  

Heatplots show monthly 

anomalies (with respect to 

an historical reference 

period) across long-term 

time horizons.  

CCKP heatplots display the monthly anomalies for various 10-

year periods, relative to the monthly average over the historical 

recent period (1995-2014). For example, for ERA5, the value 

shown under 1980-1990 for March represents the difference 

between the average March temperature during 1980-1990 and 

the average March temperature across the reference period 

(1995-2014).    

Natural variability 

(‘natvar’, ‘natvarhigh’, 

‘natvarlow’) - available for 

ERA5 and CMIP6 

(historical scenario)  

Climate variability is a 

natural characteristic of the 

climate system, and any 

observed trend or change 

must be assessed against 

this background to be 

meaningful. Comparing 

evolving climate changes 

with the range of natural 

variability helps pinpoint 

when a trend departs from 

historical variability, 

marking the "year of 

significant change." Periods 

dominated by natural 

variability (low trends 

compared to larger 

variability) can be 

contrasted with periods 

where a substantial, often 

anthropogenic, trend leads 

to a clear departure from 

natural variability—this is 

known as the "emergence 

of change." Long-term time 

CCKP is applying the formulation adopted in the sixth 

Assessment Report of IPCC (Masson-Delmotte et al, 2021; see 

Cross-Chapter Box Atlas 1, p. 1945-19485). A detrended annual 

series (or for each month or season separately) is used to 

determine the standard deviation, which is then scaled by 

sqrt(2/20 years) * 1.645 to get a climatologically meaningful 

natural variability threshold. The number 1.645 corresponds to a 

90% confidence level.    

  

For historical data (ERA5), ‘natvarhigh’ refers to the 

climatological average value plus the natural variability, while 

‘natvarlow’ refers to the climatological value minus the natural 

variability.   

  

For CMIP6 model historical ensembles, the determination of 

natural variability is more difficult because it is essentially 

removed by building a ~30-model ensemble. CCKP uses a 

relatively conservative format of the 90th percentile of the 

natural variability from the multi-model collection as the upper 

bound (‘natvarhigh’) and the 10th percentile of the natural 

variability as the lower bound (‘natvarlow’).   

Note that natural variability can also be calculated for SSP 

scenarios, but this data is not available for download on CCKP. 

We rely on natural variability from the historical period.  
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series are essential for 

identifying shifts in the 

dynamics of a selected 

variable or indicator.  

Return level 

(‘returnlevel...’) - available 

for extreme precipitation 

events in CMIP6 models.  

The return level 

corresponds to the size or 

intensity of an event that 

occurs with a given 

probability over a certain 

time frame (return period).  

For precipitation extremes, we provide Return Level (5yr, 10yr, 

25yr, 50yr, 100yr) e.g. returnlevel5yr – Intensity level of 

extreme events occurring at a given return period.    

  

  

  

Return period 

(‘returnperiod...’) - 

available for extreme 

precipitation events and 

cyclones in CMIP6 models.  

The return period 

represents the average time 

interval between 

occurrences of a particular 

event (e.g., a flood with a 

certain discharge level or a 

tropical cyclone with a 

certain intensity).  

For precipitation extremes, we provide Return Period (25mm, 

50mm, 100mm, 150mm, 200mm) e.g. returnperiod25mm - 

Average time between extreme events defined as precipitation 

exceeding different thresholds. Note: 500-year and 1000-year 

return periods are also available; however, due to high volatility 

and poor model performance, CCKP does not make these data 

public.  

For cyclones, we provide the return period for each category and 

above.  

Trend (‘trend’, 

‘trendsignificance’, 

‘trendconfidence’) - 

available for ERA5 and 

CMIP6 (ssp scenarios)  

A trend refers to a long-

term change in a variable, 

expressed in the CCKP as 

change per decade or 

percent change per decade. 

Reporting trends with their 

significance is crucial.  

  

The trend is calculated using regression on an annual time series 

smoothed with a 20-year running average. For CMIP6 models, 

the trend is calculated separately for each model. Then, the 

ensemble trend is calculated by taking the trends from individual 

models and determining the median, along with the 10th and 

90th percentiles. The Theil–Sen estimator, which is robust 

against outliers, is used to calculate the regression for the 

median. The CCKP is transitioning to a similarly robust, but 

faster approach called RANSAC.   

The confidence and significance of the trend are assessed using 

the Mann-Kendall test. The significance is determined by 

calculating a p-value, which represents the probability of 

observing the data if the null hypothesis (no trend) were true. A 

low p-value (typically less than 5%) suggests that the trend is 

unlikely due to random chance and is therefore significant. 

Significance is then expressed as a binary outcome to support 

map presentations on the web: locations determined to have a 

significant trend are marked as “_FillValue” (= missing value) 

and non-significant locations are marked as = 1. This reflects the 

mapping convention of not obscuring anomalies that are 

significant while hatching or stippling areas that are not 

significant (see IPCC AR6 conventions). The actual level of 

confidence (1 minus p-value), that is the degree of certainty in 

the results, is stored in the trend confidence with values >= 95 

(%) indicating that the observed trend is real. Trends can be 

influenced by various factors, including climate change as well 

as natural variability, but investigating the causes in observed 

data requires attribution analysis, which is currently outside the 

scope of CCKP. For the ensemble, confidence and significance 

are evaluated using the same approach, beginning with the 

ensemble time series.  

Year of change - available 

for ERA5 and CMIP6 (ssp 

scenarios)  

The year-of-change allows 

the user to predict when the 

climate signal will likely 

emerge significantly above 

the interannual natural 

The year-of-change is defined as the first year when the 20-yr 

smoothed time series that represents the evolving climate (from 

2005 to 2100) surpasses (or drops below) the upper (or lower) 

threshold and stays beyond the natural variability. Transient 

changes are possible and do occur for low emission SSPs and 
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variability for the first 

time.  

  

some regions, meaning that for these scenarios the climate trend 

surpasses the natural variability for a limited period of time and 

then falls back within the natural historical variability.  
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